什么是LLVM

LLVM项目是模块化、可重用的编译器以及工具链技术的集合。

美国计算机协会 (ACM) 将其2012年软件系统奖项颁给了LLVM,之前曾经获得此奖项的软件和技术包括:Java、Apache、Mosaic、the World Wide Web、Smalltalk、UNIX、Eclipse等等。
LLVM创始人:Chris Lattner,亦是Swift之父。

趣闻:Chris Latter本来只是想写一个底层的虚拟机,这也是LLVM名字的由来——low level virtual machine,跟Java的JVM虚拟机一样。可是后来,LLVM从来没有被用作过虚拟机,哪怕LLVM的名气已经传开了。所以人们决定仍然叫他LLVM,更多的时候只是当作“商标”一样的感觉在使用,但其实它跟虚拟机没有半毛钱关系。官方描述如下
The name “LLVM” itself is not an acronym; it is the full name of the project. “LLVM”这个名称本身不是首字母缩略词; 它是项目的全名。

传统的编译器架构

传统编译器架构
  • Frontend:前端
    词法分析、语法分析、语义分析、生成中间代码。
  • Optimizer:优化器
    中间代码优化。
  • Backend:后端
    生成机器码。

LLVM架构

LLVM架构
  • 不同的前端后端使用统一的中间代码LLVM Intermediate Representation (LLVM IR)

  • 如果需要支持一种新的编程语言,那么只需要实现一个新的前端

  • 如果需要支持一种新的硬件设备,那么只需要实现一个新的后端

  • 优化阶段是一个通用的阶段,它针对的是统一的LLVM IR,不论是支持新的编程语言,还是支持新的硬件设备,都不需要对优化阶段做修改

  • 相比之下,GCC的前端和后端没分得太开,前端后端耦合在了一起。所以GCC为了支持一门新的语言,或者为了支持一个新的目标平台,就变得特别困难

  • LLVM现在被作为实现各种静态和运行时编译语言的通用基础结构(GCC家族、Java、.NET、Python、Ruby、Scheme、Haskell、D等)

什么是Clang

LLVM项目的一个子项目,基于LLVM架构的C/C++/Objective-C编译器前端。

相比于GCC,Clang具有如下优点

  • 编译速度快:在某些平台上,Clang的编译速度显著的快过GCC(Debug模式下编译OC速度比GCC快3倍)
  • 占用内存小:Clang生成的AST所占用的内存是GCC的五分之一左右
  • 模块化设计:Clang采用基于库的模块化设计,易于 IDE 集成及其他用途的重用
  • 诊断信息可读性强:在编译过程中,Clang 创建并保留了大量详细的元数据 (metadata),有利于调试和错误报告
  • 设计清晰简单,容易理解,易于扩展增强

Clang与LLVM关系

Clang与LLVM

LLVM整体架构,前端用的是clang,广义的LLVM是指整个LLVM架构,一般狭义的LLVM指的是LLVM后端(包含代码优化和目标代码生成)。

源代码(C/C++)经过clang–> 中间代码(经过一系列的优化,优化用的是Pass) --> 机器码

LLVM Pass是LLVM代码优化中的一个重要组成部分。为便于理解,我们可以将Pass看作一个又一个的模块,各个Pass可以通过IR获取信息为下一个Pass做好准备,又或者直接对中间代码进行优化。

OC源文件的编译过程

这里用Xcode创建一个Test项目,然后cd到main.m的上一路径。
命令行查看编译的过程: $ clang -ccc-print-phases main.m

1
2
3
4
5
6
7
8
9
$ clang -ccc-print-phases main.m 

0: input, "main.m", objective-c
1: preprocessor, {0}, objective-c-cpp-output
2: compiler, {1}, ir
3: backend, {2}, assembler
4: assembler, {3}, object
5: linker, {4}, image
6: bind-arch, "x86_64", {5}, image

0.找到main.m文件
1.预处理器,处理include、import、宏定义
2.编译器编译,编译成ir中间代码
3.后端,生成目标代码
4.汇编
5.链接其他动态库、静态库
6.编译成适合某个架构的代码

查看preprocessor(预处理)的结果: $ clang -E main.m
这个命令敲出,终端就会打印许多信息,大致如下:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
# 1 "main.m"
# 1 "<built-in>" 1
# 1 "<built-in>" 3
# 353 "<built-in>" 3
# 1 "<command line>" 1
# 1 "<built-in>" 2
# 1 "main.m" 2
.
.
.
int main(int argc, const char * argv[]) {
@autoreleasepool {
NSLog(@"Hello, World!");
}
return 0;
}

词法分析

词法分析,生成Token: $ clang -fmodules -E -Xclang -dump-tokens main.m
将代码分成一个个小单元(token)

举例如下:

1
2
3
void test(int a, int b){
int c = a + b - 3;
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
void 'void'  [StartOfLine]  Loc=<main.m:18:1>
identifier 'test' [LeadingSpace] Loc=<main.m:18:6>
l_paren '(' Loc=<main.m:18:10>
int 'int' Loc=<main.m:18:11>
identifier 'a' [LeadingSpace] Loc=<main.m:18:15>
comma ',' Loc=<main.m:18:16>
int 'int' [LeadingSpace] Loc=<main.m:18:18>
identifier 'b' [LeadingSpace] Loc=<main.m:18:22>
r_paren ')' Loc=<main.m:18:23>
l_brace '{' Loc=<main.m:18:24>
int 'int' [StartOfLine] [LeadingSpace] Loc=<main.m:19:5>
identifier 'c' [LeadingSpace] Loc=<main.m:19:9>
equal '=' [LeadingSpace] Loc=<main.m:19:11>
identifier 'a' [LeadingSpace] Loc=<main.m:19:13>
plus '+' [LeadingSpace] Loc=<main.m:19:15>
identifier 'b' [LeadingSpace] Loc=<main.m:19:17>
minus '-' [LeadingSpace] Loc=<main.m:19:19>
numeric_constant '3' [LeadingSpace] Loc=<main.m:19:21>
semi ';' Loc=<main.m:19:22>
r_brace '}' [StartOfLine] Loc=<main.m:20:1>
eof '' Loc=<main.m:20:2>

可以看出,词法分析的时候,将上面的代码拆分一个个token,后面数字表示某一行的第几个字符,例如第一个void,表示第18行第一个字符。

语法树-AST

语法分析,生成语法树(AST,Abstract Syntax Tree): $ clang -fmodules -fsyntax-only -Xclang -ast-dump main.m
通过语法树,我们能知道这个代码是做什么的。

还是刚刚的test函数
生成语法树如下:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
|-FunctionDecl 0x7fa1439f5630 <line:18:1, line:20:1> line:18:6 test 'void (int, int)'
| |-ParmVarDecl 0x7fa1439f54b0 <col:11, col:15> col:15 used a 'int'
| |-ParmVarDecl 0x7fa1439f5528 <col:18, col:22> col:22 used b 'int'
| `-CompoundStmt 0x7fa142167c88 <col:24, line:20:1>
| `-DeclStmt 0x7fa142167c70 <line:19:5, col:22>
| `-VarDecl 0x7fa1439f5708 <col:5, col:21> col:9 c 'int' cinit
| `-BinaryOperator 0x7fa142167c48 <col:13, col:21> 'int' '-'
| |-BinaryOperator 0x7fa142167c00 <col:13, col:17> 'int' '+'
| | |-ImplicitCastExpr 0x7fa1439f57b8 <col:13> 'int' <LValueToRValue>
| | | `-DeclRefExpr 0x7fa1439f5768 <col:13> 'int' lvalue ParmVar 0x7fa1439f54b0 'a' 'int'
| | `-ImplicitCastExpr 0x7fa1439f57d0 <col:17> 'int' <LValueToRValue>
| | `-DeclRefExpr 0x7fa1439f5790 <col:17> 'int' lvalue ParmVar 0x7fa1439f5528 'b' 'int'
| `-IntegerLiteral 0x7fa142167c28 <col:21> 'int' 3

`-<undeserialized declarations>

在终端敲出的时候,终端很直观的帮我们用颜色区分。我们可以用图形显示如下:

test函数的语法树

LLVM IR

LLVM IR有3种表示形式(本质是等价的)

  • text: 便于阅读的文本格式,类似于汇编语言,拓展名.ll, $ clang -S -emit-llvm main.m
  • memory: 内存格式
  • bitcode: 二进制格式,拓展名.bc, $ clang -c -emit-llvm main.m

我们以text形式编译查看:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
; Function Attrs: noinline nounwind optnone ssp uwtable
define void @test(i32, i32) #2 {
%3 = alloca i32, align 4
%4 = alloca i32, align 4
%5 = alloca i32, align 4
store i32 %0, i32* %3, align 4
store i32 %1, i32* %4, align 4
%6 = load i32, i32* %3, align 4
%7 = load i32, i32* %4, align 4
%8 = add nsw i32 %6, %7
%9 = sub nsw i32 %8, 3
store i32 %9, i32* %5, align 4
ret void
}

IR基本语法
注释以分号 ; 开头
全局标识符以@开头,局部标识符以%开头
alloca,在当前函数栈帧中分配内存
i32,32bit,4个字节的意思
align,内存对齐
store,写入数据
load,读取数据
官方语法参考 https://llvm.org/docs/LangRef.html

Ref

搬运自深入浅出让你理解什么是LLVM

代码优化与LLVM IR pass